10  Taxonomic Profiling, OTU Tables and Visualisation

Author

Maxime Borry

Tip

For this chapter’s exercises, if not already performed, you will need to download the chapter’s dataset, decompress the archive, and create and activate the conda environment.

Do this, use wget or right click and save to download this Zenodo archive: 10.5281/zenodo.8413138, and unpack

tar xvf taxonomic-profiling.tar.gz 
cd taxonomic-profiling/

You can then create the subsequently activate environment with

conda env create -f taxonomic-profiling.yml
conda activate taxonomic-profiling

10.1 Introduction

In this chapter, we’re going to look at taxonomic profiling, or in other words, how to get the microbial composition of a sample from the DNA sequencing data.

Though there are many algorithms, and even more different tools available to perform taxonomic profiling, the general idea remains the same (Figure 10.1).

After cleaning up the sequencing data, generally saved as FASTQ files, a taxonomic profiler is used to compare the sequenced DNA to a reference database of sequences from known organisms, in order to generate a taxonomic profile of all organisms identified in a sample (Figure 10.1)

Figure 10.1: General overview of a taxonomic profiling analysis workflow

If you prefer text instead of pictograms, the workflow we’re going to cover today is outlined in the figure below, adapted from Sharpton (2014)

Figure 10.2: A typical metagenomics analysis workflow, adapted from Sharpton (2014)

Because different organisms can possess the same DNA, especially when looking at shorter sequences, taxonomic profilers need to have a way to resolve the ambiguity in the taxonomic assignation (Figure 10.3).

Figure 10.3: Different species can share the same DNA sequence

By leveraging an algorithm known as the Lowest Common Ancestor (LCA), and the taxonomic tree of all known species, ambiguities are going to be resolved by assigning a higher, less precise, taxonomic rank to ambiguous matches(Figure 10.4).

Figure 10.4: A diagram of the LCA algorithm, a way to resolve these ambiguities

10.2 Chapter Overview

Today, we’re going to use the following tools:

to explore a toy dataset that has already been prepared for you.

10.2.1 Download and Subsample

import subprocess
import glob
from pathlib import Path

For this tutorial, we will be using the ERR5766177 library from the sample 2612 published by Maixner et al. 2021

`

10.2.1.1 Subsampling the sequencing files to make the analysis quicker for this tutorial

This Python code defines a function called subsample that takes in a FASTQ file name, an output directory, and a depth value (defaulting to 1000000). The function uses the seqtk command-line tool to subsample the input FASTQ file to the desired depth and saves the output to a new file in the specified output directory. The function prints the constructed command string to the console for debugging purposes.

def subsample(filename, outdir, depth=1000000):
    basename = Path(filename).stem
    cmd = f"seqtk sample -s42 {filename} {depth} > {outdir}/{basename}_subsample_{depth}.fastq"
    print(cmd)
    subprocess.check_output(cmd, shell=True)

This Python code uses a for loop to iterate over all the files in the ../data/raw/ directory that match the pattern *, and calls the subsample (defined above) function on each file in the directory ../data/subsampled.

for f in glob.glob("../data/raw/*"):
    outdir = "../data/subsampled"
    subsample(f, outdir)
seqtk sample -s42 ../data/raw/ERR5766177_PE.mapped.hostremoved.fwd.fq.gz 1000000 >
../data/subsampled/ERR5766177_PE.mapped.hostremoved.fwd.fq_subsample_1000000.fastq
seqtk sample -s42 ../data/raw/ERR5766177_PE.mapped.hostremoved.rev.fq.gz 1000000 >
../data/subsampled/ERR5766177_PE.mapped.hostremoved.rev.fq_subsample_1000000.fastq

Finally, we compress all files to gzip format

gzip -f ../data/subsampled/*.fastq

10.3 Working in a jupyter environment

This tutorial run-through is using a Jupyter Notebook for writing & executing Python code and for annotating.

Jupyter notebooks are convenient and have two types of cells: Markdown and Code. The markup cell syntax is very similar to R markdown. The markdown cells are used for annotating, which is important for sharing code with collaborators, reproducibility, and documentation.

To load, please run the following command from within the chapter’s directory.

cd notebooks/
jupyter notebook analysis.ipynb

You can then follow that notebook, which should mirror the contents of this chapter! Otherwise try making a new notebook within Jupyter File > New > Notebook!

Warning

If you wish to run all commands manually (i.e., without the notebook), you must make sure you run all commands while within the notebook directory of this chapter.

10.4 Data pre-processing

Before starting to analyze our data, we will need to pre-process them to remove reads mapping to the host genome, here, Homo sapiens.

To do so, I’ve used the first steps of the nf-core/eager pipeline, more information of which can be found in the Ancient Metagenomic Pipelines chapter.

I’ve already done some pre-processed the data, and the resulting cleaned files are available in the data/eager_cleaned/.

If you wish to re-pre-prepare the data yourself, the basic eager command to do so is below, running on the output of the previous block in chapter overview.

nextflow run nf-core/eager \
-r 2.4.7 \
-profile <docker/singularity/podman/conda/institute> \
--input '*_R{1,2}.fastq.gz' \
--fasta 'human_genome.fasta' \
--hostremoval_input_fastq

10.5 Adapter sequence trimming and low-quality bases trimming

Sequencing adapters are small DNA sequences adding prior to DNA sequencing to allow the DNA fragments to attach to the sequencing flow cells (see Introduction to NGS Sequencing). Because these adapters could interfere with downstream analyses, we need to remove them before proceeding any further. Furthermore, because the quality of the sequencing is not always optimal, we need to remove bases of lower sequencing quality to might lead to spurious results in downstream analyses.

To perform both of these tasks, we’ll use the program fastp.

The following command gets you the help of fastp (the --help option is a common option in command-line tools that displays a list of available options and their descriptions).

fastp -h
option needs value: --html
usage: fastp [options] ...
options:
  -i, --in1                            read1 input file name (string [=])
  -o, --out1                           read1 output file name (string [=])
  -I, --in2                            read2 input file name (string [=])
  -O, --out2                           read2 output file name (string [=])
      --unpaired1                      for PE input, if read1 passed QC but read2 not, it will be written to unpaired1.
                                       Default is to discard it. (string [=])
      --unpaired2                      for PE input, if read2 passed QC but read1 not, it will be written to unpaired2.
                                       If --unpaired2 is same as --unpaired1 (default mode), both unpaired reads will be
                                       written to this same file. (string [=])
      --overlapped_out                 for each read pair, output the overlapped region if it has no any mismatched
                                       base. (string [=])
      --failed_out                     specify the file to store reads that cannot pass the filters. (string [=])
  -m, --merge                          for paired-end input, merge each pair of reads into a single read if they are
                                       overlapped. The merged reads will be written
                                       to the file given by --merged_out, the unmerged reads will be written to the
                                       files specified by --out1 and --out2. The merging mode is disabled by default.
      --merged_out                     in the merging mode, specify the file name to store merged output, or specify
                                       --stdout to stream the merged output (string [=])
      --include_unmerged               in the merging mode, write the unmerged or unpaired reads to the file specified
                                       by --merge. Disabled by default.
  -6, --phred64                        indicate the input is using phred64 scoring (it'll be converted to phred33,
                                       so the output will still be phred33)
  -z, --compression                    compression level for gzip output (1 ~ 9). 1 is fastest, 9 is smallest, default is 4. (int [=4])
      --stdin                          input from STDIN. If the STDIN is interleaved paired-end FASTQ, please also add --interleaved_in.
      --stdout                         stream passing-filters reads to STDOUT. This option will result in interleaved
                                       FASTQ output for paired-end output. Disabled by default.
      --interleaved_in                 indicate that <in1> is an interleaved FASTQ which contains both read1 and read2.
                                       Disabled by default.
      --reads_to_process               specify how many reads/pairs to be processed. Default 0 means process all reads. (int [=0])
      --dont_overwrite                 don't overwrite existing files. Overwritting is allowed by default.
      --fix_mgi_id                     the MGI FASTQ ID format is not compatible with many BAM operation tools, enable this option to fix it.
  -V, --verbose                        output verbose log information (i.e. when every 1M reads are processed).
  -A, --disable_adapter_trimming       adapter trimming is enabled by default. If this option is specified, adapter trimming is disabled
  -a, --adapter_sequence               the adapter for read1. For SE data, if not specified, the adapter will be auto-detected.
                                       For PE data, this is used if R1/R2 are found not overlapped. (string [=auto])
      --adapter_sequence_r2            the adapter for read2 (PE data only). This is used if R1/R2 are found not overlapped.
                                       If not specified, it will be the same as <adapter_sequence> (string [=auto])
      --adapter_fasta                  specify a FASTA file to trim both read1 and read2 (if PE) by all the sequences in this FASTA file (string [=])
      --detect_adapter_for_pe          by default, the auto-detection for adapter is for SE data input only, turn on this
                                    option to enable it for PE data.
  -f, --trim_front1                    trimming how many bases in front for read1, default is 0 (int [=0])
  -t, --trim_tail1                     trimming how many bases in tail for read1, default is 0 (int [=0])
  -b, --max_len1                       if read1 is longer than max_len1, then trim read1 at its tail to make it as
                                       long as max_len1. Default 0 means no limitation (int [=0])
  -F, --trim_front2                    trimming how many bases in front for read2. If it's not specified, it will follow read1's settings (int [=0])
  -T, --trim_tail2                     trimming how many bases in tail for read2. If it's not specified, it will follow read1's settings (int [=0])
  -B, --max_len2                       if read2 is longer than max_len2, then trim read2 at its tail to make it as long as max_len2.
                                       Default 0 means no limitation. If it's not specified, it will follow read1's settings (int [=0])
  -D, --dedup                          enable deduplication to drop the duplicated reads/pairs
      --dup_calc_accuracy              accuracy level to calculate duplication (1~6), higher level uses more memory (1G, 2G, 4G, 8G, 16G, 24G).
                                       Default 1 for no-dedup mode, and 3 for dedup mode. (int [=0])
      --dont_eval_duplication          don't evaluate duplication rate to save time and use less memory.
  -g, --trim_poly_g                    force polyG tail trimming, by default trimming is automatically enabled for Illumina NextSeq/NovaSeq data
      --poly_g_min_len                 the minimum length to detect polyG in the read tail. 10 by default. (int [=10])
  -G, --disable_trim_poly_g            disable polyG tail trimming, by default trimming is automatically enabled for Illumina NextSeq/NovaSeq data
  -x, --trim_poly_x                    enable polyX trimming in 3' ends.
      --poly_x_min_len                 the minimum length to detect polyX in the read tail. 10 by default. (int [=10])
  -5, --cut_front                      move a sliding window from front (5') to tail, drop the bases in the window if
                                       its mean quality < threshold, stop otherwise.
  -3, --cut_tail                       move a sliding window from tail (3') to front, drop the bases in the window if
                                       its mean quality < threshold, stop otherwise.
  -r, --cut_right                      move a sliding window from front to tail, if meet one window with mean quality
                                       < threshold, drop the bases in the window and the right part, and then stop.
  -W, --cut_window_size                the window size option shared by cut_front, cut_tail or cut_sliding. Range: 1~1000, default: 4 (int [=4])
  -M, --cut_mean_quality               the mean quality requirement option shared by cut_front, cut_tail or cut_sliding.
                                       Range: 1~36 default: 20 (Q20) (int [=20])
      --cut_front_window_size          the window size option of cut_front, default to cut_window_size if not specified (int [=4])
      --cut_front_mean_quality         the mean quality requirement option for cut_front, default to cut_mean_quality if not specified (int [=20])
      --cut_tail_window_size           the window size option of cut_tail, default to cut_window_size if not specified (int [=4])
      --cut_tail_mean_quality          the mean quality requirement option for cut_tail, default to cut_mean_quality if not specified (int [=20])
      --cut_right_window_size          the window size option of cut_right, default to cut_window_size if not specified (int [=4])
      --cut_right_mean_quality         the mean quality requirement option for cut_right, default to cut_mean_quality if not specified (int [=20])
  -Q, --disable_quality_filtering      quality filtering is enabled by default. If this option is specified, quality filtering is disabled
  -q, --qualified_quality_phred        the quality value that a base is qualified. Default 15 means phred quality >=Q15 is qualified. (int [=15])
  -u, --unqualified_percent_limit      how many percents of bases are allowed to be unqualified (0~100). Default 40 means 40% (int [=40])
  -n, --n_base_limit                   if one read's number of N base is >n_base_limit, then this read/pair is discarded. Default is 5 (int [=5])
  -e, --average_qual                   if one read's average quality score <avg_qual, then this read/pair is discarded.
                                       Default 0 means no requirement (int [=0])
  -L, --disable_length_filtering       length filtering is enabled by default. If this option is specified, length filtering is disabled
  -l, --length_required                reads shorter than length_required will be discarded, default is 15. (int [=15])
      --length_limit                   reads longer than length_limit will be discarded, default 0 means no limitation. (int [=0])
  -y, --low_complexity_filter          enable low complexity filter. The complexity is defined as the percentage of base
                                       that is different from its next base (base[i] != base[i+1]).
  -Y, --complexity_threshold           the threshold for low complexity filter (0~100). Default is 30, which means 30% complexity is required. (int [=30])
      --filter_by_index1               specify a file contains a list of barcodes of index1 to be filtered out, one barcode per line (string [=])
      --filter_by_index2               specify a file contains a list of barcodes of index2 to be filtered out, one barcode per line (string [=])
      --filter_by_index_threshold      the allowed difference of index barcode for index filtering, default 0 means completely identical. (int [=0])
  -c, --correction                     enable base correction in overlapped regions (only for PE data), default is disabled
      --overlap_len_require            the minimum length to detect overlapped region of PE reads. This will affect overlap analysis based PE merge,
                                       adapter trimming and correction. 30 by default. (int [=30])
      --overlap_diff_limit             the maximum number of mismatched bases to detect overlapped region of PE reads.
                                       This will affect overlap analysis based PE merge, adapter trimming and correction. 5 by default. (int [=5])
      --overlap_diff_percent_limit     the maximum percentage of mismatched bases to detect overlapped region of PE reads.
                                       This will affect overlap analysis based PE merge, adapter trimming and correction. Default 20 means 20%. (int [=20])
  -U, --umi                            enable unique molecular identifier (UMI) preprocessing
      --umi_loc                        specify the location of UMI, can be (index1/index2/read1/read2/per_index/per_read, default is none (string [=])
      --umi_len                        if the UMI is in read1/read2, its length should be provided (int [=0])
      --umi_prefix                     if specified, an underline will be used to connect prefix and UMI (i.e.
                                       prefix=UMI, UMI=AATTCG, final=UMI_AATTCG). No prefix by default (string [=])
      --umi_skip                       if the UMI is in read1/read2, fastp can skip several bases following UMI, default is 0 (int [=0])
  -p, --overrepresentation_analysis    enable overrepresented sequence analysis.
  -P, --overrepresentation_sampling    one in (--overrepresentation_sampling) reads will be computed for overrepresentation
                                       analysis (1~10000), smaller is slower, default is 20. (int [=20])
  -j, --json                           the json format report file name (string [=fastp.json])
  -h, --html                           the html format report file name (string [=fastp.html])
  -R, --report_title                   should be quoted with ' or ", default is "fastp report" (string [=fastp report])
  -w, --thread                         worker thread number, default is 3 (int [=3])
  -s, --split                          split output by limiting total split file number with this option (2~999), a sequential number prefix
                                       will be added to output name ( 0001.out.fq, 0002.out.fq...), disabled by default (int [=0])
  -S, --split_by_lines                 split output by limiting lines of each file with this option(>=1000), a sequential number prefix will be
                                       added to output name ( 0001.out.fq, 0002.out.fq...), disabled by default (long [=0])
  -d, --split_prefix_digits            the digits for the sequential number padding (1~10), default is 4, so the filename will be padded as
                                       0001.xxx, 0 to disable padding (int [=4])
      --cut_by_quality5                DEPRECATED, use --cut_front instead.
      --cut_by_quality3                DEPRECATED, use --cut_tail instead.
      --cut_by_quality_aggressive      DEPRECATED, use --cut_right instead.
      --discard_unmerged               DEPRECATED, no effect now, see the introduction for merging.
  -?, --help                           print this message

Here we use fastp to preprocess a pair of FASTQ files. The code specifies the input files, merges the paired-end reads on their overlaps, removes duplicate reads, and generates JSON and HTML reports. The output files are saved in the ../results/fastp/ directory.

fastp \
    --in1 ../data/subsampled/ERR5766177_PE.mapped.hostremoved.fwd.fq_subsample_1000000.fastq.gz \
    --in2 ../data/subsampled/ERR5766177_PE.mapped.hostremoved.fwd.fq_subsample_1000000.fastq.gz \
    --merge \
    --merged_out ../results/fastp/ERR5766177.merged.fastq.gz \
    --include_unmerged \
    --dedup \
    --json ../results/fastp/ERR5766177.fastp.json \
    --html ../results/fastp/ERR5766177.fastp.html \
Read1 before filtering:
total reads: 1000000
total bases: 101000000
Q20 bases: 99440729(98.4562%)
Q30 bases: 94683150(93.7457%)

Read2 before filtering:
total reads: 1000000
total bases: 101000000
Q20 bases: 99440729(98.4562%)
Q30 bases: 94683150(93.7457%)

Merged and filtered:
total reads: 1994070
total bases: 201397311
Q20 bases: 198330392(98.4772%)
Q30 bases: 188843169(93.7665%)

Filtering result:
reads passed filter: 1999252
reads failed due to low quality: 728
reads failed due to too many N: 20
reads failed due to too short: 0
reads with adapter trimmed: 282
bases trimmed due to adapters: 18654
reads corrected by overlap analysis: 0
bases corrected by overlap analysis: 0

Duplication rate: 0.2479%

Insert size peak (evaluated by paired-end reads): 31

Read pairs merged: 228
% of original read pairs: 0.0228%
% in reads after filtering: 0.0114339%


JSON report: ../results/fastp/ERR5766177.fastp.json
HTML report: ../results/fastp/ERR5766177.fastp.html

fastp --in1 ../data/subsampled/ERR5766177_PE.mapped.hostremoved.fwd.fq_subsample_1000000.fastq.gz \
--in2 ../data/subsampled/ERR5766177_PE.mapped.hostremoved.fwd.fq_subsample_1000000.fastq.gz --merge \
--merged_out ../results/fastp/ERR5766177.merged.fastq.gz --include_unmerged --dedup \
--json ../results/fastp/ERR5766177.fastp.json --html ../results/fastp/ERR5766177.fastp.html
fastp v0.23.2, time used: 11 seconds

10.6 Taxonomic profiling with Metaphlan

MetaPhlAn is a computational tool for profiling the composition of microbial communities from metagenomic shotgun sequencing data.

metaphlan  --help
usage: metaphlan --input_type {fastq,fasta,bowtie2out,sam} [--force]
                 [--bowtie2db METAPHLAN_BOWTIE2_DB] [-x INDEX]
                 [--bt2_ps BowTie2 presets] [--bowtie2_exe BOWTIE2_EXE]
                 [--bowtie2_build BOWTIE2_BUILD] [--bowtie2out FILE_NAME]
                 [--min_mapq_val MIN_MAPQ_VAL] [--no_map] [--tmp_dir]
                 [--tax_lev TAXONOMIC_LEVEL] [--min_cu_len]
                 [--min_alignment_len] [--add_viruses] [--ignore_eukaryotes]
                 [--ignore_bacteria] [--ignore_archaea] [--stat_q]
                 [--perc_nonzero] [--ignore_markers IGNORE_MARKERS]
                 [--avoid_disqm] [--stat] [-t ANALYSIS TYPE]
                 [--nreads NUMBER_OF_READS] [--pres_th PRESENCE_THRESHOLD]
                 [--clade] [--min_ab] [-o output file] [--sample_id_key name]
                 [--use_group_representative] [--sample_id value]
                 [-s sam_output_file] [--legacy-output] [--CAMI_format_output]
                 [--unknown_estimation] [--biom biom_output] [--mdelim mdelim]
                 [--nproc N] [--install] [--force_download]
                 [--read_min_len READ_MIN_LEN] [-v] [-h]
                 [INPUT_FILE] [OUTPUT_FILE]

DESCRIPTION
 MetaPhlAn version 3.1.0 (25 Jul 2022):
 METAgenomic PHyLogenetic ANalysis for metagenomic taxonomic profiling.

AUTHORS: Francesco Beghini (francesco.beghini@unitn.it),Nicola Segata (nicola.segata@unitn.it), Duy Tin Truong,
Francesco Asnicar (f.asnicar@unitn.it), Aitor Blanco Miguez (aitor.blancomiguez@unitn.it)

COMMON COMMANDS

 We assume here that MetaPhlAn is installed using the several options available (pip, conda, PyPi)
 Also BowTie2 should be in the system path with execution and read permissions, and Perl should be installed)

========== MetaPhlAn clade-abundance estimation =================

The basic usage of MetaPhlAn consists in the identification of the clades (from phyla to species )
present in the metagenome obtained from a microbiome sample and their
relative abundance. This correspond to the default analysis type (-t rel_ab).

*  Profiling a metagenome from raw reads:
$ metaphlan metagenome.fastq --input_type fastq -o profiled_metagenome.txt

*  You can take advantage of multiple CPUs and save the intermediate BowTie2 output for re-running
   MetaPhlAn extremely quickly:
$ metaphlan metagenome.fastq --bowtie2out metagenome.bowtie2.bz2 --nproc 5 --input_type fastq -o profiled_metagenome.txt

*  If you already mapped your metagenome against the marker DB (using a previous MetaPhlAn run), you
   can obtain the results in few seconds by using the previously saved --bowtie2out file and
   specifying the input (--input_type bowtie2out):
$ metaphlan metagenome.bowtie2.bz2 --nproc 5 --input_type bowtie2out -o profiled_metagenome.txt

*  bowtie2out files generated with MetaPhlAn versions below 3 are not compatibile.
   Starting from MetaPhlAn 3.0, the BowTie2 ouput now includes the size of the profiled metagenome and the average read length.
   If you want to re-run MetaPhlAn using these file you should provide the metagenome size via --nreads:
$ metaphlan metagenome.bowtie2.bz2 --nproc 5 --input_type bowtie2out --nreads 520000 -o profiled_metagenome.txt

*  You can also provide an externally BowTie2-mapped SAM if you specify this format with
   --input_type. Two steps: first apply BowTie2 and then feed MetaPhlAn with the obtained sam:
$ bowtie2 --sam-no-hd --sam-no-sq --no-unal --very-sensitive -S metagenome.sam -x \
  ${mpa_dir}/metaphlan_databases/mpa_v30_CHOCOPhlAn_201901 -U metagenome.fastq
$ metaphlan metagenome.sam --input_type sam -o profiled_metagenome.txt

*  We can also natively handle paired-end metagenomes, and, more generally, metagenomes stored in
  multiple files (but you need to specify the --bowtie2out parameter):
$ metaphlan metagenome_1.fastq,metagenome_2.fastq --bowtie2out metagenome.bowtie2.bz2 --nproc 5 --input_type fastq

-------------------------------------------------------------------


========== Marker level analysis ============================

MetaPhlAn introduces the capability of characterizing organisms at the strain level using non
aggregated marker information. Such capability comes with several slightly different flavours and
are a way to perform strain tracking and comparison across multiple samples.
Usually, MetaPhlAn is first ran with the default -t to profile the species present in
the community, and then a strain-level profiling can be performed to zoom-in into specific species
of interest. This operation can be performed quickly as it exploits the --bowtie2out intermediate
file saved during the execution of the default analysis type.

*  The following command will output the abundance of each marker with a RPK (reads per kilo-base)
   higher 0.0. (we are assuming that metagenome_outfmt.bz2 has been generated before as
   shown above).
$ metaphlan -t marker_ab_table metagenome_outfmt.bz2 --input_type bowtie2out -o marker_abundance_table.txt
   The obtained RPK can be optionally normalized by the total number of reads in the metagenome
   to guarantee fair comparisons of abundances across samples. The number of reads in the metagenome
   needs to be passed with the '--nreads' argument

*  The list of markers present in the sample can be obtained with '-t marker_pres_table'
$ metaphlan -t marker_pres_table metagenome_outfmt.bz2 --input_type bowtie2out -o marker_abundance_table.txt
   The --pres_th argument (default 1.0) set the minimum RPK value to consider a marker present

*  The list '-t clade_profiles' analysis type reports the same information of '-t marker_ab_table'
   but the markers are reported on a clade-by-clade basis.
$ metaphlan -t clade_profiles metagenome_outfmt.bz2 --input_type bowtie2out -o marker_abundance_table.txt

*  Finally, to obtain all markers present for a specific clade and all its subclades, the
   '-t clade_specific_strain_tracker' should be used. For example, the following command
   is reporting the presence/absence of the markers for the B. fragilis species and its strains
   the optional argument --min_ab specifies the minimum clade abundance for reporting the markers

$ metaphlan -t clade_specific_strain_tracker --clade s__Bacteroides_fragilis metagenome_outfmt.bz2 --input_typ
  bowtie2out -o marker_abundance_table.txt

-------------------------------------------------------------------

positional arguments:
  INPUT_FILE            the input file can be:
                        * a fastq file containing metagenomic reads
                        OR
                        * a BowTie2 produced SAM file.
                        OR
                        * an intermediary mapping file of the metagenome generated by a previous MetaPhlAn run
                        If the input file is missing, the script assumes that the input is provided using the standard
                        input, or named pipes.
                        IMPORTANT: the type of input needs to be specified with --input_type
  OUTPUT_FILE           the tab-separated output file of the predicted taxon relative abundances
                        [stdout if not present]

Required arguments:
  --input_type {fastq,fasta,bowtie2out,sam}
                        set whether the input is the FASTA file of metagenomic reads or
                        the SAM file of the mapping of the reads against the MetaPhlAn db.

Mapping arguments:
  --force               Force profiling of the input file by removing the bowtie2out file
  --bowtie2db METAPHLAN_BOWTIE2_DB
                        Folder containing the MetaPhlAn database. You can specify the location by exporting the
                        DEFAULT_DB_FOLDER variable in the shell.
                        [default /Users/maxime/mambaforge/envs/summer_school_microbiome/lib/python3.9/site-packages/metaphlan/metaphlan_databases]
  -x INDEX, --index INDEX
                        Specify the id of the database version to use. If "latest", MetaPhlAn will get the latest version.
                        If an index name is provided, MetaPhlAn will try to use it, if available, and skip the online check.
                        If the database files are not found on the local MetaPhlAn installation they
                        will be automatically downloaded [default latest]
  --bt2_ps BowTie2 presets
                        Presets options for BowTie2 (applied only when a FASTA file is provided)
                        The choices enabled in MetaPhlAn are:
                         * sensitive
                         * very-sensitive
                         * sensitive-local
                         * very-sensitive-local
                        [default very-sensitive]
  --bowtie2_exe BOWTIE2_EXE
                        Full path and name of the BowTie2 executable. This option allowsMetaPhlAn to reach the
                        executable even when it is not in the system PATH or the system PATH is unreachable
  --bowtie2_build BOWTIE2_BUILD
                        Full path to the bowtie2-build command to use, deafult assumes that 'bowtie2-build is present in the system path
  --bowtie2out FILE_NAME
                        The file for saving the output of BowTie2
  --min_mapq_val MIN_MAPQ_VAL
                        Minimum mapping quality value (MAPQ) [default 5]
  --no_map              Avoid storing the --bowtie2out map file
  --tmp_dir             The folder used to store temporary files [default is the OS dependent tmp dir]

Post-mapping arguments:
  --tax_lev TAXONOMIC_LEVEL
                        The taxonomic level for the relative abundance output:
                        'a' : all taxonomic levels
                        'k' : kingdoms
                        'p' : phyla only
                        'c' : classes only
                        'o' : orders only
                        'f' : families only
                        'g' : genera only
                        's' : species only
                        [default 'a']
  --min_cu_len          minimum total nucleotide length for the markers in a clade for
                        estimating the abundance without considering sub-clade abundances
                        [default 2000]
  --min_alignment_len   The sam records for aligned reads with the longest subalignment
                        length smaller than this threshold will be discarded.
                        [default None]
  --add_viruses         Allow the profiling of viral organisms
  --ignore_eukaryotes   Do not profile eukaryotic organisms
  --ignore_bacteria     Do not profile bacterial organisms
  --ignore_archaea      Do not profile archeal organisms
  --stat_q              Quantile value for the robust average
                        [default 0.2]
  --perc_nonzero        Percentage of markers with a non zero relative abundance for misidentify a species
                        [default 0.33]
  --ignore_markers IGNORE_MARKERS
                        File containing a list of markers to ignore.
  --avoid_disqm         Deactivate the procedure of disambiguating the quasi-markers based on the
                        marker abundance pattern found in the sample. It is generally recommended
                        to keep the disambiguation procedure in order to minimize false positives
  --stat                Statistical approach for converting marker abundances into clade abundances
                        'avg_g'  : clade global (i.e. normalizing all markers together) average
                        'avg_l'  : average of length-normalized marker counts
                        'tavg_g' : truncated clade global average at --stat_q quantile
                        'tavg_l' : truncated average of length-normalized marker counts (at --stat_q)
                        'wavg_g' : winsorized clade global average (at --stat_q)
                        'wavg_l' : winsorized average of length-normalized marker counts (at --stat_q)
                        'med'    : median of length-normalized marker counts
                        [default tavg_g]

Additional analysis types and arguments:
  -t ANALYSIS TYPE      Type of analysis to perform:
                         * rel_ab: profiling a metagenomes in terms of relative abundances
                         * rel_ab_w_read_stats: profiling a metagenomes in terms of relative abundances and estimate
                                                the number of reads coming from each clade.
                         * reads_map: mapping from reads to clades (only reads hitting a marker)
                         * clade_profiles: normalized marker counts for clades with at least a non-null marker
                         * marker_ab_table: normalized marker counts (only when > 0.0 and normalized by metagenome size if --nreads is specified)
                         * marker_counts: non-normalized marker counts [use with extreme caution]
                         * marker_pres_table: list of markers present in the sample (threshold at 1.0 if not differently specified with --pres_th
                         * clade_specific_strain_tracker: list of markers present for a specific clade, specified with --clade, and all its subclades
                        [default 'rel_ab']
  --nreads NUMBER_OF_READS
                        The total number of reads in the original metagenome. It is used only when
                        -t marker_table is specified for normalizing the length-normalized counts
                        with the metagenome size as well. No normalization applied if --nreads is not
                        specified
  --pres_th PRESENCE_THRESHOLD
                        Threshold for calling a marker present by the -t marker_pres_table option
  --clade               The clade for clade_specific_strain_tracker analysis
  --min_ab              The minimum percentage abundance for the clade in the clade_specific_strain_tracker analysis

Output arguments:
  -o output file, --output_file output file
                        The output file (if not specified as positional argument)
  --sample_id_key name  Specify the sample ID key for this analysis. Defaults to 'SampleID'.
  --use_group_representative
                        Use a species as representative for species groups.
  --sample_id value     Specify the sample ID for this analysis. Defaults to 'Metaphlan_Analysis'.
  -s sam_output_file, --samout sam_output_file
                        The sam output file
  --legacy-output       Old MetaPhlAn2 two columns output
  --CAMI_format_output  Report the profiling using the CAMI output format
  --unknown_estimation  Scale relative abundances to the number of reads mapping to known clades in order to estimate unknowness
  --biom biom_output, --biom_output_file biom_output
                        If requesting biom file output: The name of the output file in biom format
  --mdelim mdelim, --metadata_delimiter_char mdelim
                        Delimiter for bug metadata: - defaults to pipe. e.g. the pipe in k__Bacteria|p__Proteobacteria

Other arguments:
  --nproc N             The number of CPUs to use for parallelizing the mapping [default 4]
  --install             Only checks if the MetaPhlAn DB is installed and installs it if not. All other parameters are ignored.
  --force_download      Force the re-download of the latest MetaPhlAn database.
  --read_min_len READ_MIN_LEN
                        Specify the minimum length of the reads to be considered when parsing the input file with
                        'read_fastx.py' script, default value is 70
  -v, --version         Prints the current MetaPhlAn version and exit
  -h, --help            show this help message and exit

The following command uses MetaPhlAn to profile the taxonomic composition of the ERR5766177 metagenomic sample. The input file is specified as a merged FASTQ file, and the output is saved as a text file containing the taxonomic profile. The --bowtie2out option is used to specify the output file for the Bowtie2 alignment, and the –nproc option is used to specify the number of CPUs to use for the analysis.

metaphlan ../results/fastp/ERR5766177.merged.fastq.gz  \
    --input_type fastq \
    --bowtie2out ../results/metaphlan/ERR5766177.bt2.out  \
    --nproc 4 \
    > ../results/metaphlan/ERR5766177.metaphlan_profile.txt

The main results files that we’re interested in is located at ../results/metaphlan/ERR5766177.metaphlan_profile.txt

It’s a tab separated file, with taxons in rows, with their relative abundance in the sample

head ../results/metaphlan/ERR5766177.metaphlan_profile.txt
#mpa_v30_CHOCOPhlAn_201901
#/home/maxime_borry/.conda/envs/maxime/envs/summer_school_microbiome/bin/metaphlan ../results/fastp/ERR5766177.merged.fastq.gz \
--input_type fastq --bowtie2out ../results/metaphlan/ERR5766177.bt2.out --nproc 8
#SampleID   Metaphlan_Analysis
#clade_name NCBI_tax_id relative_abundance  additional_species
k__Bacteria 2   82.23198
k__Archaea  2157    17.76802
k__Bacteria|p__Firmicutes   2|1239  33.47957
k__Bacteria|p__Bacteroidetes    2|976   28.4209
k__Bacteria|p__Actinobacteria   2|201174    20.33151
k__Archaea|p__Euryarchaeota 2157|28890  17.76802

10.7 Visualizing the taxonomic profile

10.7.1 Visualizing metaphlan taxonomic profile with Pavian

Pavian is a web-based tool for interactive visualization and analysis of metagenomics data. It provides a user-friendly interface for exploring taxonomic and functional profiles of microbial communities, and allows users to generate interactive plots and tables that can be customized and shared (Figure 10.5).

You can open Pavian in your browser by visiting fbreitwieser.shinyapps.io/pavian.

Figure 10.5: Screenshot of the pavian metagenomics visualisation interface, with menus on the left, a select sample and filter taxa search bar at the top, and a Sankey visualisation of the example metagenome sample

There are different ways to run it:

  • If you have docker installed

    docker pull 'florianbw/pavian'
    docker run --rm -p 5000:80 florianbw/pavian

Then open your browser and visit localhost:5000

  • If you are familiar with R

    if (!require(remotes)) { install.packages("remotes") }
    remotes::install_github("fbreitwieser/pavian")
    
    pavian::runApp(port=5000)

Then open your browser and visit localhost:5000

10.7.2 Visualizing metaphlan taxonomic profile with Krona

Krona is a software tool for interactive visualization of hierarchical data, such as taxonomic profiles generated by metagenomics tools like MetaPhlAn. Krona allows users to explore the taxonomic composition of microbial communities in a hierarchical manner, from the highest taxonomic level down to the species level.

The metaphlan2krona.py script is used to convert the MetaPhlAn taxonomic profile output to a format that can be visualized by Krona. The output of the script is a text file that contains the taxonomic profile in a hierarchical format that can be read by Krona. The ktImportText command is then used to generate an interactive HTML file that displays the taxonomic profile in a hierarchical manner using Krona.

python ../scripts/metaphlan2krona.py -p ../results/metaphlan/ERR5766177.metaphlan_profile.txt -k ../results/krona/ERR5766177_krona.out
ktImportText -o ../results/krona/ERR5766177_krona.html ../results/krona/ERR5766177_krona.out
Writing ../results/krona/ERR5766177_krona.html...

10.8 Getting modern comparative reference data

In order to compare our sample with modern reference samples, I used the curatedMetagenomicsData package, which provides both curated metadata, and pre-computed metaphlan taxonomic profiles for published modern human samples.

The full R code to get these data is available in curatedMetagenomics/get_sources.Rmd.

I pre-selected 200 gut microbiome samples from non-westernized (100) and westernized (100) from healthy, non-antibiotic users donors.

# Load required packages
library(curatedMetagenomicData)
library(tidyverse)

# Filter samples based on specific criteria
sampleMetadata %>%
    filter(body_site == "stool" & antibiotics_current_use == "no" & disease == "healthy") %>%
    group_by(non_westernized) %>%
    sample_n(100) %>%
    ungroup() -> selected_samples

# Extract relative abundance data for selected samples
selected_samples %>%
    returnSamples("relative_abundance") -> rel_ab

# Split relative abundance data by taxonomic rank and write to CSV files
data_ranks <- splitByRanks(rel_ab)

for (r in names(data_ranks)) {
    # Print taxonomic rank and output file name
    print(r)
    output_file <- paste0("../../data/curated_metagenomics/modern_sources_", tolower(r), ".csv")
    print(output_file)

    # Write relative abundance data to CSV file
    assay_rank <- as.data.frame(assay(data_ranks[[r]]))
    write.csv(assay_rank, output_file)
}
  • The resulting pre-computed metaphlan taxonomic profiles (split by taxonomic ranks) are available in data/curated_metagenomics
  • The associated metadata is available at data/metadata/curated_metagenomics_modern_sources.csv

10.9 Loading the ancient sample taxonomic profile

This is the moment where we will use the Pandas library Python to perform some data manipulation.
We will also use the Taxopy library to work with taxonomic information.

In python we need to import necessary libraries, i.e. pandas and taxopy, and a couple of other utility libraries.

import pandas as pd
import taxopy
import pickle
import gzip

And we then create an instance of the taxopy taxonomy database. This will take a few seconds/minutes, as it needs to download the entire NCBI taxonomy before storing in a local database.

taxdb = taxopy.TaxDb()

Let’s read the metaphlan profile table with pandas (a python package with a similar concept to tidyverse dyplyr, tidyr packa). It’s a tab separated file, so we need to specify the delimiter as \t, and skip the comment lines of the files that start with #.

ancient_data = pd.read_csv("../results/metaphlan/ERR5766177.metaphlan_profile.txt",
                            comment="#",
                            delimiter="\t",
                            names=['clade_name','NCBI_tax_id','relative_abundance','additional_species'])

To look at the head of a dataframe (Table 10.1) with pandas

ancient_data.head()
Table 10.1: Top few lines of a MetaPhlAn taxonomic profile
clade_name NCBI_tax_id relative_abundance additional_species
0 k__Bacteria 2 82.23198 NaN
1 k__Archaea 2157 17.76802 NaN
2 k__Bacteria|p__Firmicutes 2|1239 33.47957 NaN
3 k__Bacteria|p__Bacteroidetes 2|976 28.42090 NaN
4 k__Bacteria|p__Actinobacteria 2|201174 20.33151 NaN

We can also specify more rows by randomly picking 10 rows to display (Table 10.2).

ancient_data.sample(10)
Table 10.2: Ten randomly selected lines of a MetaPhlAn taxonomic profile
clade_name NCBI_tax_id relative_abundance additional_species
1 k__Archaea 2157 17.76802 NaN
46 k__Bacteria|p__Bacteroidetes|c_Bacteroidia|o 2|976|200643|171549|171552|838|165179 25.75544 k__Bacteria|p__Bacteroidetes|c_Bacteroidia|o
55 k__Bacteria|p__Firmicutes|c__Clostridia|o__Clo… 2|1239|186801|186802|186803|189330|88431 0.91178 NaN
18 k__Archaea|p__Euryarchaeota|c_Halobacteria|o 2157|28890|183963|2235 0.71177 NaN
36 k__Bacteria|p__Actinobacteria|c__Actinobacteri… 2|201174|1760|85004|31953|1678 9.39377 NaN
65 k__Bacteria|p__Actinobacteria|c__Actinobacteri… 2|201174|1760|85004|31953|1678|216816 0.05447 k__Bacteria|p__Actinobacteria|c__Actinobacteri…
37 k__Bacteria|p__Firmicutes|c__Clostridia|o__Clo… 2|1239|186801|186802|186803| 2.16125 NaN
38 k__Bacteria|p__Firmicutes|c__Clostridia|o__Clo… 2|1239|186801|186802|541000|216851 1.24537 NaN
26 k__Bacteria|p__Actinobacteria|c__Actinobacteri… 2|201174|1760|85004|31953 9.39377 NaN
48 k__Bacteria|p__Firmicutes|c__Clostridia|o__Clo… 2|1239|186801|186802|541000|1263|40518 14.96816 k__Bacteria|p__Firmicutes|c__Clostridia|o__Clo…

Because for this analysis, we’re only going to look at the relative abundance, we’ll only use this column, and the Taxonomic ID (TAXID) information, so we can drop (get rid of) the unnecessary columns.

ancient_data = (
    ancient_data
    .rename(columns={'NCBI_tax_id': 'TAXID'})
    .drop(['clade_name','additional_species'], axis=1)
)
Important

Always investigate your data at first !

ancient_data.relative_abundance.sum()
700.00007

Pause and think: A relative abundance of 700%, really ?

Let’s proceed further and try to understand what’s happening (Table 10.3).

ancient_data.head()
Table 10.3: A two column table of TAXIDs and the organisms corresponding relative abundance
TAXID relative_abundance
0 2 82.23198
1 2157 17.76802
2 2|1239 33.47957
3 2|976 28.42090
4 2|201174 20.33151

To make sense of the TAXID, we will use taxopy to get all the taxonomic related informations such as (Table 10.4):

  • name of the taxon
  • rank of the taxon
  • lineage of the taxon
#### This function is here to help us get the taxon information
#### from the metaphlan taxonomic ID lineage, of the following form
#### 2|976|200643|171549|171552|838|165179

def to_taxopy(taxid_entry, taxo_db):
    """Returns a taxopy taxon object
    Args:
        taxid_entry(str): metaphlan TAXID taxonomic lineage
        taxo_db(taxopy database)
    Returns:
        (bool): Returns a taxopy taxon object
    """
    taxid = taxid_entry.split("|")[-1] # get the last element
    try:
        if len(taxid) > 0:
            return taxopy.Taxon(int(taxid), taxo_db) # if it's not empty, get the taxon corresponding to the taxid
        else:
            return taxopy.Taxon(12908, taxo_db) # otherwise, return the taxon associated with unclassified sequences
    except taxopy.exceptions.TaxidError as e:
        return taxopy.Taxon(12908, taxo_db)
ancient_data['taxopy'] = ancient_data['TAXID'].apply(to_taxopy, taxo_db=taxo_db)

ancient_data.head()
Table 10.4: A three column table of TAXIDs and the organisms corresponding relative abundance, and the attached taxonomic path associated with the TAXID
TAXID relative_abundance taxopy
0 2 82.23198 s__Bacteria
1 2157 17.76802 s__Archaea
2 2|1239 33.47957 s__Bacteria;c__Terrabacteria group;p__Firmicutes
3 2|976 28.42090 s__Bacteria;c__FCB group;p__Bacteroidetes
4 2|201174 20.33151 s__Bacteria;c__Terrabacteria group;p__Actinoba…
ancient_data = ancient_data.assign(
    rank = ancient_data.taxopy.apply(lambda x: x.rank),
    name = ancient_data.taxopy.apply(lambda x: x.name),
    lineage = ancient_data.taxopy.apply(lambda x: x.name_lineage),
)

ancient_data
Table 10.5: A five column table of TAXIDs and the organisms corresponding relative abundance, and the attached taxonomic path associated with the TAXID, but also the rank and name of the particular taxonomic ID
TAXID relative_abundance taxopy rank name lineage
0 2 82.23198 s__Bacteria superkingdom Bacteria [Bacteria, cellular organisms, root]
1 2157 17.76802 s__Archaea superkingdom Archaea [Archaea, cellular organisms, root]
2 2|1239 33.47957 s__Bacteria;c__Terrabacteria group;p__Firmicutes phylum Firmicutes [Firmicutes, Terrabacteria group, Bacteria, ce…
3 2|976 28.42090 s__Bacteria;c__FCB group;p__Bacteroidetes phylum Bacteroidetes [Bacteroidetes, Bacteroidetes/Chlorobi group, …
4 2|201174 20.33151 s__Bacteria;c__Terrabacteria group;p__Actinoba… phylum Actinobacteria [Actinobacteria, Terrabacteria group, Bacteria…
62 2|1239|186801|186802|186803|572511|33039 0.24910 s__Bacteria;c__Terrabacteria group;p__Firmicut… species [Ruminococcus] torques [[Ruminococcus] torques, Mediterraneibacter, L…
63 2|201174|84998|84999|84107|1472762|1232426 0.17084 s__Bacteria;c__Terrabacteria group;p__Actinoba… species [Collinsella] massiliensis [[Collinsella] massiliensis, Enorma, Coriobact…
64 2|1239|186801|186802|186803|189330|39486 0.07690 s__Bacteria;c__Terrabacteria group;p__Firmicut… species Dorea formicigenerans [Dorea formicigenerans, Dorea, Lachnospiraceae…
65 2|201174|1760|85004|31953|1678|216816 0.05447 s__Bacteria;c__Terrabacteria group;p__Actinoba… species Bifidobacterium longum [Bifidobacterium longum, Bifidobacterium, Bifi…
66 2|1239|186801|186802|541000|1263|1262959 0.01440 s__Bacteria;c__Terrabacteria group;p__Firmicut… species Ruminococcus sp. CAG:488 [Ruminococcus sp. CAG:488, environmental sampl…

Because our modern data are split by ranks, we’ll first split our ancient sample by rank

Which of the entries are at the species rank level?

ancient_species = ancient_data.query("rank == 'species'")

ancient_species.head()
Table 10.6: A five column table of TAXIDs and the organisms corresponding relative abundance, and the attached taxonomic path associated with the TAXID, but also the rank and name of the particular taxonomic ID, filtered to only species
TAXID relative_abundance taxopy rank name lineage
46 2|976|200643|171549|171552|838|165179 25.75544 s__Bacteria;c__FCB group;p__Bacteroidetes;c__B… species Prevotella copri [Prevotella copri, Prevotella, Prevotellaceae,…
47 2157|28890|183925|2158|2159|2172|2173 17.05626 s__Archaea;p__Euryarchaeota;c__Methanomada gro… species Methanobrevibacter smithii [Methanobrevibacter smithii, Methanobrevibacte…
48 2|1239|186801|186802|541000|1263|40518 14.96816 s__Bacteria;c__Terrabacteria group;p__Firmicut… species Ruminococcus bromii [Ruminococcus bromii, Ruminococcus, Oscillospi…
49 2|1239|186801|186802|186803|841|301302 13.57908 s__Bacteria;c__Terrabacteria group;p__Firmicut… species Roseburia faecis [Roseburia faecis, Roseburia, Lachnospiraceae,…
50 2|201174|84998|84999|84107|102106|74426 9.49165 s__Bacteria;c__Terrabacteria group;p__Actinoba… species Collinsella aerofaciens [Collinsella aerofaciens, Collinsella, Corioba…

Let’s do a bit of renaming to prepare for what’s coming next

ancient_species = ancient_species[['relative_abundance','name']].set_index('name').rename(columns={'relative_abundance':'ERR5766177'})

ancient_species.head()
Table 10.7: Reconstruction of the first two column taxonomic profile but with species-level organism names rather than TAXIDs
name ERR5766177
Prevotella copri 25.75544
Methanobrevibacter smithii 17.05626
Ruminococcus bromii 14.96816
Roseburia faecis 13.57908
Collinsella aerofaciens 9.49165
ancient_phylums = ancient_data.query("rank == 'phylum'")

ancient_phylums = ancient_phylums[['relative_abundance','name']].set_index('name').rename(columns={'relative_abundance':'ERR5766177'})

ancient_phylums
Table 10.8: Reconstruction of the first two column taxonomic profile but with phylum-level organism names rather than TAXIDs
name ERR5766177
Firmicutes 33.47957
Bacteroidetes 28.42090
Actinobacteria 20.33151
Euryarchaeota 17.76802

Now, let’s go back to the 700% relative abundance issue…

ancient_data.groupby('rank')['relative_abundance'].sum()
    rank
    class            99.72648
    family           83.49854
    genus            97.56524
    no rank          19.48331
    order            99.72648
    phylum          100.00000
    species         100.00002
    superkingdom    100.00000
    Name: relative_abundance, dtype: float64

Seems better, right ?

Pause and think: why don’t we get exactly 100% ?

10.10 Bringing together ancient and modern samples

Now let’s load our modern reference samples

First at the phylum level (Table 10.9)

modern_phylums = pd.read_csv("../data/curated_metagenomics/modern_sources_phylum.csv", index_col=0)
modern_phylums.head()
Table 10.9: Taxonomic profiles at phylum level of multiple modern samples
de028ad4-7ae6-11e9-a106-68b59976a384 PNP_Main_283 PNP_Validation_55 G80275 PNP_Main_363 SAMEA7045572 SAMEA7045355 HD-13 EGAR00001420773_9002000001423910 SID5428-4 A46_02_1FE TZ_87532 A94_01_1FE KHG_7 LDK_4 KHG_9 A48_01_1FE KHG_1 TZ_81781 A09_01_1FE
Bacteroidetes 0.00000 17.44332 82.86400 69.99087 31.93081 51.76204 53.32801 74.59667 8.81074 26.39694 1.97760 1.49601 67.21410 4.29848 68.16890 38.59709 14.81828 10.13908 57.14031 11.61544
Firmicutes 95.24231 60.47031 16.53946 22.81977 65.23075 41.96928 45.77661 23.51065 54.35341 62.23094 76.68499 78.13269 29.72394 33.51772 19.11149 46.87139 72.68136 35.43789 40.57101 24.72113
Proteobacteria 4.49959 0.77098 0.05697 4.07757 0.27316 3.33972 0.02001 1.72865 0.00000 1.81016 16.57250 0.76159 2.35058 9.83772 5.32392 0.19699 3.64655 17.64151 0.30580 56.20177
Actinobacteria 0.25809 10.27631 0.45187 1.11902 2.31075 2.92715 0.77667 0.16403 36.55138 1.19951 3.01814 19.20468 0.69913 46.99479 7.39093 14.26365 5.47750 36.77145 1.16426 7.40894
Verrucomicrobia 0.00000 0.00784 0.00000 1.99276 0.25451 0.00000 0.00000 0.00000 0.09940 3.29795 0.05011 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Then at the species level

modern_species = pd.read_csv("../data/curated_metagenomics/modern_sources_species.csv", index_col=0)

As usual, we always check if our data has been loaded correctly (Table 10.10)

modern_species.head()
Table 10.10: Taxonomic profiles at species level of multiple modern samples
de028ad4-7ae6-11e9-a106-68b59976a384 PNP_Main_283 PNP_Validation_55 G80275 PNP_Main_363 SAMEA7045572 SAMEA7045355 HD-13 EGAR00001420773_9002000001423910 SID5428-4 A46_02_1FE TZ_87532 A94_01_1FE KHG_7 LDK_4 KHG_9 A48_01_1FE KHG_1 TZ_81781 A09_01_1FE
Bacteroides vulgatus 0.0 0.60446 1.59911 4.39085 0.04494 4.66505 2.99431 29.30325 1.48560 0.98818 0.20717 0.0 0.00309 0.48891 0.00000 0.02230 0.00000 0.15112 0.0 0.00836
Bacteroides stercoris 0.0 0.00546 0.00000 0.00000 2.50789 0.00000 20.57498 8.28443 1.23261 0.00000 0.00000 0.0 0.00000 0.00693 0.00000 0.02603 0.00000 0.19318 0.0 0.00000
Acidaminococcus intestini 0.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.32822 0.00000 0.00000 0.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0 0.00000
Eubacterium sp CAG 38 0.0 0.06712 0.81149 0.05247 0.26027 0.00000 0.00000 2.62415 0.46585 0.23372 0.78140 0.0 0.00000 0.00499 0.00000 0.02446 0.00000 0.00000 0.0 0.00000
Parabacteroides distasonis 0.0 1.34931 2.00672 5.85067 0.59019 7.00027 1.28075 0.61758 0.07383 2.80355 0.11423 0.0 0.01181 0.01386 0.03111 0.07463 0.15597 0.07541 0.0 0.01932

10.10.1 Time to merge !

Now, let’s merge our ancient sample with the modern data in one single table.
For that, we’ll use the pandas merge function which will merge the two tables together, using the index as the merge key.

all_species = ancient_species.merge(modern_species, left_index=True, right_index=True, how='outer').fillna(0)
all_phylums = ancient_phylums.merge(modern_phylums, left_index=True, right_index=True, how='outer').fillna(0)

Finally, let’s load the metadata, which contains the information about the modern samples (Table 10.11).

metadata = pd.read_csv("../data/metadata/curated_metagenomics_modern_sources.csv")

metadata.head()
Table 10.11: Taxonomic profiles at species level of multiple modern samples
study_name sample_id subject_id body_site antibiotics_current_use study_condition disease age infant_age age_category hla_drb11 birth_order age_twins_started_to_live_apart zigosity brinkman_index alcohol_numeric breastfeeding_duration formula_first_day ALT eGFR
0 ShaoY_2019 de028ad4-7ae6-11e9-a106-68b59976a384 C01528_ba stool no control healthy 0.0 4.0 newborn NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 ZeeviD_2015 PNP_Main_283 PNP_Main_283 stool no control healthy NaN NaN adult NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2 ZeeviD_2015 PNP_Validation_55 PNP_Validation_55 stool no control healthy NaN NaN adult NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
3 VatanenT_2016 G80275 T014806 stool no control healthy 1.0 NaN child NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
4 ZeeviD_2015 PNP_Main_363 PNP_Main_363 stool no control healthy NaN NaN adult NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

10.11 Comparing ancient and modern samples

10.11.1 Taxonomic composition

One common plot in microbiome papers in a stacked barplot, often at the phylum or family level.

First, we’ll do some renaming, to make the value of the metadata variables a bit easier to understand (Table 10.12)

group_info = pd.concat(
    [
        (
        metadata['non_westernized']
        .map({'no':'westernized','yes':'non_westernized'}) # for the non_westernized in the modern sample metadata, rename the value levels
        .to_frame(name='group').set_index(metadata['sample_id']) # rename the column to group
        .reset_index()
        ),
        (
        pd.Series({'sample_id':'ERR5766177', 'group':'ancient'}).to_frame().transpose()
        )
    ],
    axis=0, ignore_index=True
)
group_info
    /var/folders/1c/l1qb09f15jddsh65f6xv1n_r0000gp/T/ipykernel_40830/27419655.py:2:
    FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version.
    Use pandas.concat instead.
      metadata['non_westernized']
Table 10.12: Table of samples and their group
sample_id group
0 de028ad4-7ae6-11e9-a106-68b59976a384 westernized
1 PNP_Main_283 westernized
2 PNP_Validation_55 westernized
3 G80275 westernized
4 PNP_Main_363 westernized
196 A48_01_1FE non_westernized
197 KHG_1 non_westernized
198 TZ_81781 non_westernized
199 A09_01_1FE non_westernized
200 ERR5766177 ancient

We need transform our data in tidy format to plot with plotnine, a python clone of ggplot.

Table 10.13: Table of the raw multi-sample taxonomic table
Actinobacteria Apicomplexa Ascomycota Bacteroidetes Basidiomycota Candidatus Melainabacteria Chlamydiae Chloroflexi Cyanobacteria Deferribacteres Fusobacteria Lentisphaerae Planctomycetes Proteobacteria Spirochaetes Synergistetes Tenericutes Verrucomicrobia sample_id group
200 20.33151 0.0 0.0 28.42090 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00000 0.0 0.00000 0.00000 0.0 0.0 0.00000 ERR5766177 ancient
0 0.25809 0.0 0.0 0.00000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00000 0.0 4.49959 0.00000 0.0 0.0 0.00000 de028ad4-7ae6-11e9-a106-68b59976a384 westernized
1 10.27631 0.0 0.0 17.44332 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01486 0.0 0.77098 0.00000 0.0 0.0 0.00784 PNP_Main_283 westernized
2 0.45187 0.0 0.0 82.86400 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00000 0.0 0.05697 0.00000 0.0 0.0 0.00000 PNP_Validation_55 westernized
3 1.11902 0.0 0.0 69.99087 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00000 0.0 4.07757 0.00000 0.0 0.0 1.99276 G80275 westernized
195 14.26365 0.0 0.0 38.59709 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00000 0.0 0.19699 0.00000 0.0 0.0 0.00000 KHG_9 non_westernized
196 5.47750 0.0 0.0 14.81828 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00000 0.0 3.64655 0.09964 0.0 0.0 0.00000 A48_01_1FE non_westernized
197 36.77145 0.0 0.0 10.13908 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00000 0.0 17.64151 0.00000 0.0 0.0 0.00000 KHG_1 non_westernized
198 1.16426 0.0 0.0 57.14031 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00000 0.0 0.30580 0.70467 0.0 0.0 0.00000 TZ_81781 non_westernized
199 7.40894 0.0 0.0 11.61544 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00000 0.0 56.20177 0.00000 0.0 0.0 0.00000 A09_01_1FE non_westernized

Now, we need transform this (Table 10.13) in the tidy format, with the melt function.

tidy_phylums = (
    all_phylums
    .transpose()
    .merge(group_info, left_index=True, right_on='sample_id')
    .melt(id_vars=['sample_id', 'group'], value_name='relative_abundance', var_name='Phylum', ignore_index=True)
)

Finally, we only want to keep the mean relative abundance for each phylum. To do so, we will compute the mean relative abundance, for each phylum, for each group (ancient, westernized, and non_westernized).

tidy_phylums = tidy_phylums.groupby(['group', 'Phylum']).mean().reset_index()

We then verify that the sum of the mean relative abundance is still ~100%, as an extra sanity check.

tidy_phylums.groupby('group')['relative_abundance'].sum()
group
ancient            100.000000
non_westernized     99.710255
westernized         99.905089
Name: relative_abundance, dtype: float64

10.12 Let’s make some plots

We first import plotnine

from plotnine import *

And then run plotnine to a barplot of the mean abundance per group (Figure 10.6).

ggplot(tidy_phylums, aes(x='group', y='relative_abundance', fill='Phylum')) \
+ geom_bar(position='stack', stat='identity') \
+ ylab('mean abundance') \
+ xlab("") \
+ theme_classic()
Figure 10.6: Stacked bar chart of ancient, non-westernised, and westernised sample groups on the X axis columns, and mean abundance percentage on the Y-axis. The legend and stacks of the bar represent different phyla each with a different colour

10.13 Ecological diversity

10.13.1 Alpha diversity

Alpha diversity is the measure of diversity withing each sample. It is used to estimate how many species are present in a sample, and how diverse they are.
We’ll use the python library scikit-bio to compute it, and the plotnine library (a python port of ggplot2 to visualize the results).

import skbio

Let’s compute the species richness, the Shannon, and Simpson index of diversity index (Table 10.14)

shannon = skbio.diversity.alpha_diversity(metric='shannon', counts=all_species.transpose(), ids=all_species.columns)
simpson = skbio.diversity.alpha_diversity(metric='simpson', counts=all_species.transpose(), ids=all_species.columns)
richness = (all_species != 0).astype(int).sum(axis=0)
alpha_diversity = (shannon.to_frame(name='shannon')
                   .merge(simpson.to_frame(name='simpson'), left_index=True, right_index=True)
                   .merge(richness.to_frame(name='richness'), left_index=True, right_index=True))
alpha_diversity
Table 10.14: Table of the shannon, simpson, and richness alpha diversity indicies for a subset of samples
shannon simpson richness
ERR5766177 3.032945 0.844769 21
de028ad4-7ae6-11e9-a106-68b59976a384 0.798112 0.251280 11
PNP_Main_283 5.092878 0.954159 118
PNP_Validation_55 3.670162 0.812438 72
G80275 3.831358 0.876712 66
KHG_9 3.884285 0.861683 87
A48_01_1FE 4.377755 0.930024 53
KHG_1 3.733834 0.875335 108
TZ_81781 2.881856 0.719491 44
A09_01_1FE 2.982322 0.719962 75

Let’s load the group information from the metadata. To do so, we merge the alpha diversity dataframe that we compute previously, with the metadata dataframe, using the sample_id as a merge key. Finally, we do a bit of renaming to re-encode yes/no as non_westernized/westernized.

alpha_diversity = (
    alpha_diversity
    .merge(metadata[['sample_id', 'non_westernized']], left_index=True, right_on='sample_id', how='outer')
    .set_index('sample_id')
    .rename(columns={'non_westernized':'group'})
)
alpha_diversity['group'] = alpha_diversity['group'].replace({'yes':'non_westernized','no':'westernized', pd.NA:'ERR5766177'})

alpha_diversity
Table 10.15: Table of the shannon, simpson, and richness alpha diversity indicies for a subset of samples but with the group metadata
shannon simpson richness group
sample_id
ERR5766177 3.032945 0.844769 21 ERR5766177
de028ad4-7ae6-11e9-a106-68b59976a384 0.798112 0.251280 11 westernized
PNP_Main_283 5.092878 0.954159 118 westernized
PNP_Validation_55 3.670162 0.812438 72 westernized
G80275 3.831358 0.876712 66 westernized
KHG_9 3.884285 0.861683 87 non_westernized
A48_01_1FE 4.377755 0.930024 53 non_westernized
KHG_1 3.733834 0.875335 108 non_westernized
TZ_81781 2.881856 0.719491 44 non_westernized
A09_01_1FE 2.982322 0.719962 75 non_westernized

And as always, we need it in tidy format (Table 10.17) for plotnine.

alpha_diversity = alpha_diversity.melt(id_vars='group', value_name='alpha diversity', var_name='diversity_index', ignore_index=False)

alpha_diversity
Table 10.16: Table of the shannon, simpson, and richness alpha diversity indicies for a subset of samples but with the group metadata but in long-form tidy format
group diversity_index alpha diversity
sample_id
ERR5766177 ERR5766177 shannon 3.032945
de028ad4-7ae6-11e9-a106-68b59976a384 westernized shannon 0.798112
PNP_Main_283 westernized shannon 5.092878
PNP_Validation_55 westernized shannon 3.670162
G80275 westernized shannon 3.831358
KHG_9 non_westernized richness 87.000000
A48_01_1FE non_westernized richness 53.000000
KHG_1 non_westernized richness 108.000000
TZ_81781 non_westernized richness 44.000000
A09_01_1FE non_westernized richness 75.000000

We now make a violin plot to compare the alpha diversity for each group, faceted by the type of alpha diversity index (Figure 10.7).

g = ggplot(alpha_diversity, aes(x='group', y='alpha diversity', color='group'))
g += geom_violin()
g += geom_jitter()
g += theme_classic()
g += facet_wrap('~diversity_index', scales = 'free')
g += theme(axis_text_x=element_text(rotation=45, hjust=1))
g += scale_color_manual({'ERR5766177':'#DB5F57','westernized':'#5F57DB','non_westernized':'#57DB5E'})
g += theme(subplots_adjust={'wspace': 0.15})
g
Figure 10.7: Three groups of violin plots of an ancient sample, westernised samples and non-westernised samples (x-axis) of the alpha diversity (y-axis) calculated for richness, shannon and simpson alpha indicies
Note

Pause and think: Why do we observe a smaller species richness and diversity in our sample ?

10.13.2 Beta diversity

The Beta diversity is the measure of diversity between a pair of samples. It is used to compare the diversity between samples and see how they relate.

We will compute the beta diversity using the bray-curtis dissimilarity

beta_diversity = skbio.diversity.beta_diversity(metric='braycurtis', counts=all_species.transpose(), ids=all_species.columns, validate=True)

We get a distance matrix

print(beta_diversity)
    201x201 distance matrix
    IDs:
    'ERR5766177', 'de028ad4-7ae6-11e9-a106-68b59976a384', 'PNP_Main_283', ...
    Data:
    [[0.         1.         0.81508134 ... 0.85716612 0.69790092 0.8303726 ]
     [1.         0.         0.99988327 ... 0.99853413 0.994116   0.99877258]
     [0.81508134 0.99988327 0.         ... 0.82311942 0.87202543 0.91363156]
     ...
     [0.85716612 0.99853413 0.82311942 ... 0.         0.84253376 0.76616679]
     [0.69790092 0.994116   0.87202543 ... 0.84253376 0.         0.82409272]
     [0.8303726  0.99877258 0.91363156 ... 0.76616679 0.82409272 0.        ]]

To visualize this distance matrix in a lower dimensional space, we’ll use a PCoA, which is is a method very similar to a PCA, but taking a distance matrix as input.

pcoa = skbio.stats.ordination.pcoa(beta_diversity)
    /Users/maxime/mambaforge/envs/summer_school_microbiome/lib/python3.9/site-packages/skbio/stats/ordination/_principal_coordinate_analysis.py:143: RuntimeWarning:
    The result contains negative eigenvalues. Please compare their magnitude with the magnitude of some of the largest positive eigenvalues.
    If the negative ones are smaller, it's probably safe to ignore them, but if they are large in magnitude, the results won't be useful.
    See the Notes section for more details. The smallest eigenvalue is -0.25334842745723996 and the largest is 10.204440747987945.
pcoa.samples
Table 10.17: Table principal coordinates (columns) for each of the samples (rows)
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC192 PC193 PC194 PC195 PC196 PC197 PC198 PC199 PC200 PC201
ERR5766177 0.216901 -0.039778 0.107412 0.273272 0.020540 0.114876 -0.256332 -0.151069 0.097451 0.060211 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
de028ad4-7ae6-11e9-a106-68b59976a384 -0.099355 0.145224 -0.191676 0.127626 0.119754 -0.132209 -0.097382 0.036728 0.081294 -0.056686 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PNP_Main_283 -0.214108 -0.147466 0.116027 0.090059 0.076644 0.111536 0.092115 0.026477 -0.006460 -0.018592 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PNP_Validation_55 0.244827 -0.173996 -0.311197 -0.012836 0.031759 0.117548 0.148715 -0.135641 0.034730 -0.009395 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
G80275 -0.261358 -0.077147 -0.254374 -0.065932 0.088538 0.165970 -0.005260 -0.028739 -0.002016 0.015719 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
KHG_9 0.296057 -0.150300 0.013941 0.032649 -0.147692 0.019663 -0.063120 -0.034453 -0.073514 0.070085 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A48_01_1FE 0.110621 0.030971 0.154231 -0.185961 -0.008512 -0.103420 0.028169 -0.044530 0.041902 0.068597 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
KHG_1 -0.100009 0.167885 0.009915 0.076842 -0.405582 -0.039111 -0.006421 -0.009774 -0.072252 0.150000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TZ_81781 0.405716 -0.139297 -0.075026 -0.079716 -0.053264 -0.119271 0.068261 -0.018821 0.198152 -0.012792 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A09_01_1FE 0.089101 0.471135 0.069629 -0.125644 -0.036793 0.115151 0.060507 -0.000912 -0.027239 -0.138436 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Let’s look at the variance explained by the first axes by using a scree plot (Figure 10.8).

var_explained = pcoa.proportion_explained[:9].to_frame(name='variance explained').reset_index().rename(columns={'index':'PC'})

ggplot(var_explained, aes(x='PC', y='variance explained', group=1)) \
+ geom_point() \
+ geom_line() \
+ theme_classic()
Figure 10.8: Scree plot describing the variance explained (Y-axis), for each Principal Componanent (X-axis), with a curved line from PC1 having highest variance to lowest on PC9.

In this scree plot, we’re looking for the “elbow”, where there is a drop in the slope. Here, it seems that most of the variance is captures by the 3 first principal components

pcoa_embed = pcoa.samples[['PC1','PC2','PC3']].rename_axis('sample').reset_index()

pcoa_embed = (
    pcoa_embed
    .merge(metadata[['sample_id', 'non_westernized']], left_on='sample', right_on='sample_id', how='outer')
    .drop('sample_id', axis=1)
    .rename(columns={'non_westernized':'group'})
)

pcoa_embed['group'] = pcoa_embed['group'].replace({'yes':'non_westernized','no':'westernized', pd.NA:'ERR5766177'})

Let’s first look at these components with 2D plots (Figure 10.9, Figure 10.10)

ggplot(pcoa_embed, aes(x='PC1', y='PC2', color='group')) \
+ geom_point() \
+ theme_classic() \
+ scale_color_manual({'ERR5766177':'#DB5F57','westernized':'#5F57DB','non_westernized':'#57DB5E'})
Figure 10.9: Principal Coordinate Analysis plot of PC1 (X-axis) and PC2 (Y-axis), with three groups of points in the scatter plot - blue circles of westernised data points in the bottom left, overlapping with green circles of non-westernised datapoints in the top right, and the single ancient sample as a red circle falling in between the two on the right of the overlap
ggplot(pcoa_embed, aes(x='PC1', y='PC3', color='group')) +
geom_point() +
theme_classic() +
scale_color_manual({'ERR5766177':'#DB5F57','westernized':'#5F57DB','non_westernized':'#57DB5E'})
Figure 10.10: Principal Coordinate Analysis plot of PC1 (X-axis) and PC3 (Y-axis), a similar overlap between westernised/non-westernised individuals and position of the ancient sample as in the PC1-PC2 PCoA, however this time in a horseshoe shape from bottom left for the westernised data points, curving up to the top of PC3 at a peak, and then falling again at the top of PC1

You can also plot the data above as a with a 3d plot if you were to run the following command

import plotly.express as px

fig = px.scatter_3d(pcoa_embed, x="PC1", y="PC2", z="PC3",
                  color = "group",
                  color_discrete_map={'ERR5766177':'#DB5F57','westernized':'#5F57DB','non_westernized':'#57DB5E'},
                  hover_name="sample")
fig.show()
Note

Pause and think: How do you think this embedding represents how our sample relates to modern reference samples ?

Finally, we can also visualize this distance matrix using a clustered heatmap, where pairs of sample with a small beta diversity are clustered together (Figure 10.11).

import seaborn as sns
import scipy.spatial as sp, scipy.cluster.hierarchy as hc

We set the color in seaborn to match the color palette we’ve used so far.

pcoa_embed['colour'] = pcoa_embed['group'].map({'ERR5766177':'#DB5F57','westernized':'#5F57DB','non_westernized':'#57DB5E'})

linkage = hc.linkage(sp.distance.squareform(beta_diversity.to_data_frame()), method='average')

sns.clustermap(
    beta_diversity.to_data_frame(),
    row_linkage=linkage,
    col_linkage=linkage,
    row_colors = pcoa_embed['colour'].to_list()
)
Figure 10.11: Sample-by-sample clustered heatmap, with tree representation of the clustering on the left and top of the heatmap

10.14 (Optional) clean-up

Let’s clean up your working directory by removing all the data and output from this chapter.

When closing your jupyter notebook(s), say no to saving any additional files.

Press ctrl + c on your terminal, and type y when requested. Once completed, the command below will remove the /<PATH>/<TO>/taxonomic-profiling directory as well as all of its contents.

Pro Tip

Always be VERY careful when using rm -r. Check 3x that the path you are specifying is exactly what you want to delete and nothing more before pressing ENTER!

rm -r /<PATH>/<TO>/taxonomic-profiling*

Once deleted you can move elsewhere (e.g. cd ~).

We can also get out of the conda environment with

conda deactivate

To delete the conda environment

conda remove --name taxonomic-profiling --all -y

10.15 References

Breitwieser, Florian P., and Steven L. Salzberg. 2016. “Pavian: Interactive Analysis of Metagenomics Data for Microbiomics and Pathogen Identification.” bioRxiv, October, 084715.
Chen, Shifu, Yanqing Zhou, Yaru Chen, and Jia Gu. 2018. “Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor.” Bioinformatics 34 (17): i884–90.
Ondov, Brian D., Nicholas H. Bergman, and Adam M. Phillippy. 2011. “Interactive Metagenomic Visualization in a Web Browser.” BMC Bioinformatics 12 (1): 385.
Pasolli, Edoardo, Lucas Schiffer, Paolo Manghi, Audrey Renson, Valerie Obenchain, Duy Tin Truong, Francesco Beghini, et al. 2017. “Accessible, Curated Metagenomic Data Through ExperimentHub.” Nature Methods 14 (11): 1023–24.
Reback, Jeff, jbrockmendel, Wes McKinney, Joris Van den Bossche, Tom Augspurger, Matthew Roeschke, Simon Hawkins, et al. 2022. “Pandas-Dev/Pandas: Pandas 1.4.2.” Zenodo.
scikit-bio, developers. 2022. “Scikit-Bio: A Bioinformatics Library for Data Scientists, Students, and Developers.”
Segata, Nicola, Levi Waldron, Annalisa Ballarini, Vagheesh Narasimhan, Olivier Jousson, and Curtis Huttenhower. 2012. “Metagenomic Microbial Community Profiling Using Unique Clade-Specific Marker Genes.” Nature Methods 9 (8): 811–14.
Sharpton, Thomas J. 2014. An Introduction to the Analysis of Shotgun Metagenomic Data.” Frontiers in Plant Science 5 (June).